Making Code Review Painless
Sy Truong, Meta-Xceed, Inc, Fremont, CA

ABSTRACT

Code review is an essential step in the development of concise and accurate SAS® programs. It is a required verification step
in performing validation in a regulated environment. This paper will present techniques and a macro that can be freely
downloaded to automate this task. The %coderev macro will perform many of the common tasks during a code review
including:

1. Spell checking headers and comments

2. Reviewing all input and output datasets of the program

3. Comparing defined macro variables versus macro variable usage
4. Checking for multiple macro calls that are not in a macro library
5. Evaluating hard code logic

6. Evaluating sort order of all datasets

These tasks are normally performed by an independent reviewer instead of the original programmer. By automating the
tasks, the code review process will ensure that the smallest mistake can be captured through reports to ensure the highest
quality and integrity. What normally is a dreaded task can now be done with ease.

INTRODUCTION

In the larger scheme of SAS program verification, code review plays a significant role in ensuring the quality and integrity of
your analysis. However, it is sometimes not viewed as important because code review is a mundane task that is not fully
appreciated for the value it delivers. The verification of SAS programs and output include some of the following tasks.

Code Review Systematic review of SAS programs
according to a predetermined
checklist of verification criteria.

Code Testing Perform testing on SAS programs or
macros supplying valid and invalid
inputs and verify expected output.

Log Evaluate the SAS log for error,

Evaluation warning and other unexpected
messages.

Output Visual or programmatic review of

Review report outputs as compared to

expected results.

Data Review Review attributes and contents of
output data for accuracy and

integrity.
Duplicate Independent programming to
Programming produce the same output for
comparison.

This list includes verification tasks that may not apply to all programs since not all programs produce output analysis datasets
or output reports. However, if you are verifying a macro that is used many times among all your team members, the time
invested in performing as many of these tasks as possible is worth the effort. In a regulated environment, these tasks are not
just recommendations but become requirements.

This paper will focus only on the first task of code review, although it will reference other aspects of SAS program verification.
Even though the code review is the first item in the list of tasks, the order in which you perform your verification tasks can
vary. They can be performed independently by different reviewers or by one reviewer either in parallel or serial. It is
recommended that the reviewer is a different person from the original author of the SAS program to ensure objectivity. If
possible, this effort can be outsourced to an external group so that there are no preconceived assumptions held from within
your department. Once all the tasks are performed, a centralized summary report is compiled to capture all the findings. The
process of reconciling these discrepancies goes beyond the scope of this paper but performing code review is an important
step in this process.

CODE REVIEW CHECKLIST

Traditionally, code review was performed on paper. That was when programs and output were printed out and organized in
a binder. The review process was then performed visually and a checklist was used to ensure that the reviewer did not
overlook anything. An example of such a checklist looks like the following:

SAS PROGRAM

Program header complete and up-to-
date.

Program commented clearly and
adequately.

Macro variable definitions and
usage are correct.

Data "hardcode® corrections clearly
commented with references in both
the header and program.

Sorting orders correct.

Variables have been defined in the
input datasets.

Macros used in more than one
program are in the tools dir.

SAS LOG

Error check program clear.

Warning and error messages and
warnings eliminated.
Un-initialized variables and merge
notes eliminated.

Number of observations in each
dataset as expected.

Checked all debugging messages
(e.g. PUT statements).

SAS OUTPUT
All results have be validated
either by outside methods (e.g.,
proc freq or means, other) or
against the CRT file (listing or
SAS viewer).
Titles, footnotes and labels
verified for accuracy and

completeness.

___ Spelling is correct. Checked for
typos.

___ Labels for columns and rows are
correct.

The checklist will vary with each group since there may be some departmental standards that are not universally applied. In
general, however, the essence of the list is the same. The goal of the checklist is to ensure that independent reviewers do all
the verification tasks required. This also ensures that the discrepancies found corresponding to the checklist are easily
documented and understood across different programs.

Reviews are rarely done on paper any more since the process can be effectively done on screen. This allows the reviewer to
use text searches or cut and paste between documents to more efficiently perform verification and documentation. Although
the process may have changed, the construct of a list is still a good tool to have. No matter how high tech you get, it is still a
good idea to know what it is that you are checking for while performing a code review.

AUTOMATING CODE REVIEW

Some critical analysis is performed during the code review process, but a large part of the task is repetitive. This is one of the
main reasons why people dislike performing code reviews. After performing multiple iterations of the same review tasks, the
work becomes mundane and the reviewer tends to get blurry eyed. This repetitive fatigue leads to sloppiness because the
reviewer loses the fresh acuity of performing the very first verification task.

This presents an opportunity to automate the repetitive tasks to liberate the reviewer from performing the mundane tasks.
This is the main objective for the use of the %coderev macro. This macro parses through the SAS program and captures things
that are potentially discrepant as predetermined from a list review criteria. The macro then presents a report to the reviewer
to help identify all items that are truly discrepant. %coderev has its own checklists of things it searches for. The list includes:

1. Required Comment - This will verify that there is a SAS comment preceding every data step and SAS PROC.
2. Program Header - This will verify if a comment header exists in the program.

3. Input and Output - This report will display all potential input and output produced by the program to assist in
verifying against the program header.

4. Spell Check Comments - This captures all program comments for the purpose of performing spell checking. The
report can be pasted into a word processor with a spell checker.

5. Macro Usage - This report presents all macro definition such as %let and call symputs. It will also capture all use of
macro variables which begin with & so that comparisons can be made.

6. Hard Code Logic - This captures all potential hard coded logic. A review of such logic is recommended.
7. Sort Order - Verify all sort order of datasets to ensure proper usage.

8. Macro Calls - Verify any macro that is called more than once. This is to ensure that it should be defined in a
standard tools directory rather than defined locally.

9. User Defined Formats - Capture any user defined formats that do not produce a catalog. This is a form of hard
coding that is not recommended.

10. Put Statements - Capture all put or %put statements since this is usually intended for debugging. A review of the
log is recommended against the put statements.

11. Spell Check Titles and Footnotes - All titles and footnotes are captured for the purpose of spell checking. The titles
and footnotes are also compared for similarities. This is intended to verify for consistency.

In order to perform the list of verification tasks, the code review can be initiated through a macro call with the following
syntax.

%ocoderev(path=path location of SAS programs,

program=selected SAS program name with

extension);

Is Type...

path C (200) Library referencing the
location of the reports
dataset.

program C (200) SAS program name. For
example, demog.sas.

Upon request, the code review utility will parse through the specified SAS program and systematically look for conditions
from the checklist. The macro is not intelligent enough to determine if the code is actually discrepant or not. Rather, it will
present information in a summary report to help the reviewer perform the critical analysis and make the final decision.

The following is an example of an abbreviated report used to demonstrate checklist case number 3 and 5.

Code Review Report

Program CEEE
N 9 Numb || Comments Program Code or Log
ame or
Potential
A_ae.sas 3 || Input for [34] set rawdata.ael;
Data Step
Potential [_69] proc sort data
A_ae.sas 3 || Input from el 1 At L B
SAS PROC ;ut—demo(keep—&keptvar
Potential
a_ae.sas 3 || Output for [73] data anadata.aae;
Data Step
Macro
variable @ _ .
a_ae.sas 5 created for: [13] %let pgm=a_ae;
pgm
Macro -
variable [15] %let keptvar=subjid
a_ae.sas 5 .|| usubjid studyid trtcd trtgrp
created for: e
std_dt1 mitt;
keptvar -
Macro [_69] proc sort data
; . =anadata.ademog
a_ae.sas 5 || Variable is _ _
— out=demo(keep=&keptvar
Used.):

Generated on: 05/21/2004, 11:31:41 am, truong
Located at: /myserver/stat/study101/003/validation

In this example, the reviewer can see that the input datasets for this program included: rawdata.ael and anadata.ademog. The
reviewer would then verify if the comments in the header and/or analysis plan match these results. For checklist case number
5, the reviewer can see that there were two macro variables defined: PGM and KEPTVAR. The report also shows that only
KEPTVAR was used as a macro. This will prompt the reviewer to investigate why macro PGM was not used. The program
code that is presented in the report is displayed with the line number in square brackets preceding each line. This also helps
the reviewer quickly pinpoint the location of potential discrepancies.

This prompted investigation that occurs after reviewing the report is critical in identifying discrepancies. The algorithm
sometimes does capture code that is discrepant but sometimes the code is fine. The report does not make this distinction but it
allows the reviewer to quickly identify potential discrepancies and create those “a ha
overlooked.

17

moments that might otherwise be

GETTING %CODEREV

The %coderev macro can be freely downloaded for evaluation at: http://www.meta-x.com/syvalidate/codrev/. The code review
is a macro which is part of a larger set of validation tools named Sy/Validate. Sy/Validate provides additional tools for
keeping an audit trail and version control over your validation process. Results found from the %coderev can be stored and
tracked so that you know the status of all your validation efforts.

CONCLUSION

There are many tasks performed in the process of verifying and validating SAS programs. Many of these tasks are overlooked
for their significance in maintaining accuracy and integrity of the program logic and output which it produces. The repetitive

http://www.meta-x.com/syvalidate/codrev/

aspect of these tasks gives them a bad reputation of being unglamorize grunt work that must be done to meet regulatory or
departmental SOPs.

Code review is one of such tasks that is not fully appreciated. It is an important step in a process that also includes: code
testing, log evaluation, output review, data review, and duplicate programming. Code review can be optimized when
accompanied by a checklist to ensure that all verification tasks are performed. Even though the list of tasks is clearly defined,
the mundane aspects of some of the tasks can lead to sloppiness as the reviewer gets fatigued from doing it repetitively. The
%coderev macro is design to address this issue by performing many of the mundane checks and summarizing the findings in
a report. This report helps the reviewer perform the critical analysis and identify the discrepant code.

The goal is to retain the reviewer’s objectivity during the review process even after reviewing hundreds of programs. The
unbiased eye can also be maintained if the reviewer is independent from the programmer and ideally outside the group. This
is an example where if the reviewer is outsourced as a third party, this can add fresh perspective that helps in identifying
discrepant programming practices.

The %coderev macro does remove some of the mundane review aspects of the code review process, but the critical analysis
done in identifying the deviant code is still needed by the reviewer. From a reviewer’s perspective, the removal of the boring
repetitive aspect of the work makes the process much less painful and leaves the challenging aspects of an audit. What is left
is more challenging and fun.

REFERENCES

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration.

Sy/Validate and all other Meta-Xceed, Inc. product names are registered trademarks of Meta-Xceed, Inc. in the USA.

Other brand and product names are registered trademarks or trademarks of their respective companies.

ABOUT THE AUTHOR
Sy Truong is a Systems Developer for Meta-Xceed, Inc. They may be contacted at:

Sy Truong

48501 Warm Springs Blvd. Ste 117
Fremont, CA 94539

(510) 226-1209

sy.truong@meta-x.com

