

Can Validating SAS Programs be Fun and Easy?
Sy Truong, Meta-Xceed, Inc, Fremont, CA

Abstract
Validation is normally a laborious and arduous task. This paper
will present new methodologies and tools developed in SAS that
will make the process painless. The goal is to add little or no
effort from the user's perspective, yet gain the benefit of having a
secured audit trail of all SAS programs during the development
and verification process. Some benefits are described below:

• comparing differences between different versions of
programs

• adding notes describing edit changes to each version
• adding a validation checklist of tasks associated during

verification and validation
• managing status of development to production by

applying version numbers such as version 1.2
• generating reports for documentation and

communication during validation

After you realize the ease of use and the amount of quality control
that can be gained, the task of validation becomes transparent
and fun.

Introduction This is an example of how SAS programming is difficult to

validate. Programs are inherently buggy by nature since there is
great variability and complexity. It is written by humans but is
interpreted by machine. Even though the syntax is set up with
constructs to handle the parameters to help, humans do not think
in complete logic. This leads to misinterpretations and bugs.
SAS programming is often data driven which adds another
dimension to the complexity since the data can be dynamic in
content and structure. The changes in data drive changes in
results and therefore changes in programs. The management of
changes of each component and all of its interrelationships makes
SAS programs an ever changing organism desperately in need of
containment. The issue of change control will become a major
strategy in taming the beast and is one of the primary themes of
this paper.

Validating SAS programs presents some unique challenges
especially when working within a regulated environment such as
the pharmaceutical industry. This paper explores the challenges
specific to this environment though the examples can be useful in
other environments as well. SAS programmers come from many
different backgrounds that range from biology to statistics. The
majority are not from a computer science background. This is
normally due to the fact that they have expertise in the domain of
the data in which they are analyzing. This is helpful for ensuring
the outcome of the analyses but creates an unstructured
environment for developing SAS programs. The work flow is
driven by reports and therefore is usually done in an ad hoc
manner. The analyst normally gets mockups of the report which
describe what they need to produce. They often jump right into
SAS programming with little or no data and programming design
consideration. SAS has adapted to this work flow well compared
to other more structured high level languages. Other languages
such as C or Java are stronger typed. This means that the
variables and tables have to be defined with proper variable type
and length before they can be used. On the other hand, SAS
programs can dynamically create variables as you go along
lending itself to the ad hoc nature of the development process.
This can be beneficial for creating exploratory analysis and
conducting experiments with the data. However, it fosters
software development that is riddled with maintenance
challenges. The tools used to develop SAS programs such as
display managers or text editors are further examples of ad hoc
nature. Display manager gives some structure, but it is designed
for exploration. Software development tools for other languages
allow for the programmer to manage the source code as it relates
to other programs and data. On the other hand, SAS programs
are plain text files that any user can edit with a text editor of their
choice. In a similar way, display manager leaves the programs
stored on disk as text files and does not create any other structure
upon that.

One of the attempts to create structure around the chaos is the
use of SAS macros. Macros are intended to isolate repeated
tasks and parameterize them so that they can be repeated.
However, the way macros are sometimes used leads to spaghetti
code since one macro calls another macro in a nested loop. This
sometimes results in more complexity and becomes more
challenging rather than simplifying.

Validation Benefits
There are many challenges in creating an effective validation
environment for SAS programs but there are also many benefits
that can rationalize the effort. There are reasons to make a
strong business case for performing validation. The most obvious
is the requirements by the FDA spelled out in CFR part 11. In a
regulated environment, it is not just a nice idea to perform
validation, but it is a legal necessity. Here are some examples of
other important benefits.

• Less Rollouts – Each time a program is rolled out, it is
commonly followed by patches. This is to fix bugs that
did not get caught during validation.

• Prevent Data Corruption – Bugs can be traced back to
programs that have not been fully validated. Using
these programs creates corruption in the data and
reports.

• Facilitates Communication – The requirements and
functional specifications along with the test scripts can

be developed with close collaboration with the end
user. This leads to a clearer understanding between
the user and the developer.

• Software Maintenance – During validation testing,
versioning and an audit trail are created. This helps
with tracing and attributing features and bugs. This
audit trail leads to better tracking of programs between
different releases which helps in the management of
bugs and wish list items.

A little effort can go a long way. Validation can be viewed as an
investment. At first, the amount of validation “capital” invested
may not seem to have any immediate returns. However, as the
process gets further into the development life cycle, the benefits
are well worth it. This does require a long term vision with
commitment for quality.

Validation Scenario
The following example was implemented with a small biotech
company consisting of six SAS programmers and several
statisticians. The SAS programmers and I met as a team on a
weekly basis in formulating this validation process. The validation
effort was part of a larger effort in creating a statistical computing
environment which included a new four processor Windows 2000
server. The team had to put in extra efforts in developing the
process, while at the same time performing analysis and reporting
of clinical trials data.

There are several aspects to the validation process. Our team
decided to automate the parts that will save the most amount of
time. The team originally worked on a VMS legacy computing
environment. In this environment, each SAS program was
automatically versioned each time it was edited and saved. This
works in a similar way to the GENMAX option for SAS datasets.
The operating system allows users to specify how many
generations or versions they would like to keep. Each time they
edit a SAS program, the old version is kept as a separate file with
a version number appended to its name. When the team moved
into the Windows environment, there was no such auditing
capability for SAS programs.

We developed a process and tools that would accomplish the
versioning of SAS programs called Verikit™. In order to
accomplish our validation requirements, we needed to do more
than just make a backup copy. We identified the following tasks
that needed to be done:

1. Backup – Make a copy of the current version of the
SAS program.

2. User Name – Capture the user name of the person
interacting with the program.

3. Date Time – Capture the date time at the moment of
the transaction.

4. Action – Identify what type of action is being performed.
This is defined as part of the validation process. Some
examples include: version backup, locking for testing,
validation testing, promoting to production.

5. Notes – It is optional to capture a short message
explaining the current step. This adds meaning and
context to the task.

6. Validation Tasks – If the step involves performing
validation testing, the specific validation task is
captured.

7. Status – A status associated with the SAS program to
identify if the validation testing had failed or passed.

Once we had identified all the requirements, it became obvious
that even the features of the legacy VMS operating system did not
meet our validation needs. We wanted to develop a process in
which all of the required information was captured, while adding
little or no extra effort upon the user. One of the most common
ways that a SAS programmer interacts with programs is
submitting them. We decided that this would be a good time point

to capture some of this information. From Windows Explorer, a
user submits a program by right mouse clicking on the program
and selecting “Batch Submit”.

We extended the menu so that in addition to submitting the
program, a version backup is also captured. The amount of effort
from the user is the same. That is, they would right mouse click
on the program and select a menu item.

The features of creating a backup and capturing a descriptive
note can be used during any type of SAS program development.
However, in order to integrate this into our validation process, we
needed a mechanism that would lock the program for performing
validation testing.

The process involved a verifier, who is a different person from the
original author of the SAS program, to review the program and
associated output and data. The verification may even include
developing another SAS program to come up with the same
results. In this case, the verifying program can use the same
versioning technique for a complete audit trail. During verification,
however, it made sense to lock the original code since we did not
want to be verifying a moving target. When the user initiates the
validation process by selecting the menu “V – Validation”, a copy
is made but it also changes the file extension so that it is clear
that this is no longer a program to be edited.

Upon completion of verification, the verifier can record the
findings by right mouse clicking on the locked program and
selecting “V – Notes”.

In this step, the tool would automatically capture pieces of
information of items 1 through 4 as mentioned above. In addition,
it would assign a default status for item 7. After capturing and
recording this information, it would then submit the program in the
same way that the “Batch Submit” did before. In this case, we
were able to capture about 70% of the required auditing
information without any additional effort from the user.

We had determined that users did not need to capture every
single version program during the development of their programs
or validation test scripts. It is more realistic that only pivotal
changes in the code would require a version backup. For smaller
edits to the program, users would still use the “Batch Submit”
selection. Once they decided that the code had changed
significantly from the last time a version was captured, they would
then choose the “V – Submit SAS 8.2 + Version” menu item. On
some of these code changes, a note describing the change is
required to add meaning to the audit trail. In this case, another
menu item “V – Version + Notes” is selected.

This allows the verifier to record specifically which verification
tasks were performed and if the testing was successful or not. A
status is recorded to determine what is to be done. If it failed,
then the original programmer has to fix the problem and the
verifier goes through the loop again. If it passes, it can be
promoted directly to production. At each step of the way,
information is captured including a descriptive note which gives
context to the task at hand.

Upon promotion to production, the programmer can choose to
assign a version number. This can follow the decimal
conventions such as version 1.0, 1.1, 1.2 etc…

This step would capture all the information as the previous
example including: backup program code, program name, user
name, action, task, and date time. In addition, a short note can
be entered describing the current code or logic change.

If the verifier promoted a program directly from the verification
process with the selection of “Verication Passed + Production”,
this will increment the version number by one integer value
automatically. By performing the promotion in a separate step,
the user can increment the version number to their custom value.

If during verification, problems were identified, the original
programmer will need to unlock the program to perform the fix.
This is available through the menu item “V – Unlock”. The tool
allows the user to record a note pertaining to the unlocking and
then it renames the file back with the (.sas) file extension for
further edits.

At any point, a user can generate reports to see progress of the
validation effort. They can select the menu item “V – Reports”.
The following choices are presented:

• Last Entry for Current Program
• Last Entry for all Programs
• History of Current Program
• Complete History of all Programs
• Detailed Report of Program Code

These reports can be attached or pasted into emails for
communicating status. They can also be used as documentation
of an audit trail as part of a validation test plan. These canned
reports will deliver most of what is needed. The data from which
these reports are derived are stored as a SAS dataset and
catalog. Since the tasks being performed are done by a SAS

programmer, it is a natural format to make the information
available in SAS format. The user can therefore use their favorite
reporting procedure such as PROC REPORT to generate their
own custom reports.

Even though we take the precaution of recording versions and
locking files, it is still possible to have a SAS program get out of
sync. Since the program is a text file, another team member can
accidentally open the file and inadvertently add some additional
text. This issue is resolved through the reconcile process. By
selecting the menu item “V – Reconcile”, it will check to see if the
physical program stored on disk is the same as the last version
that has been captured. In case you have promoted a program to
production mode. Reconcile will inform you if the physical
program is the same as what has been recorded in production.

The reconciliation process is commonly applied to a group of
programs rather than one at a time. As an alternate to the
interactive process, a SAS macro named %reconcile can be
used.

%reconcile(path=c:\myprog,
 program=demog.sas);

In this case, a set of programs can be reconciled at once and a
report is generated without having to clicking on each program. In
addition to this macro, there are other SAS macros in Verikit that
automate validation tasks. The items highlighted in this paper are
not comprehensive but give a flavor of one approach to the
challenge of SAS program validation.

Conclusion
SAS programming can be unstructured at times. The data being
processed drives business decisions and are key to any
organization. However, this lack of structure and formal validation
process can sometimes lead to erroneous results. The ad hoc
nature of SAS programming creates an environment that is not
conducive to consistency and accuracy. This leads to the
development of an uncontrolled environment which produces
programs that are difficult to understand.

Since performing validation can sometimes be a mundane and
resource intensive process, it is challenging to get team members
motivated to perform validation. Using the right tools which
lessen the burden upon users is the solution to getting the job
done. The tools presented in this paper, Verikit, allow users to
perform many common validation steps with just one click from
within a familiar environment. They don't have to adjust to a new
complex system with a steep learning curve. The FDA
regulations require "validation of systems to ensure accuracy,
reliability, consistent intended performance, and the ability to
discern invalid or altered records." This is accomplished through
consistent recording of changes throughout the process. Change
control is a significant part of the validation process. Verikit
attempts to automate this and other tedious steps in this process
to make the work bearable and even fun.

References

FDA, Guidance for Industry: Providing Regulatory Submissions in

Electronic Format – General Considerations, 1999

Guidance for Industry: Providing Regulatory Submissions in

Electronic Format - NDAs , January 1999

Verikit™ information at: http://www.meta-x.com/verikit

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Verikit product or service names are trademarks of Meta-Xceed,
Inc.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

About the Author

Sy Truong is a Systems Developer for Meta-Xceed, Inc. They
may be contacted at:

Sy Truong
48501 Warm Springs Blvd. Ste 117
Fremont, CA 94539
(510) 713-1686

 sy.truong@meta-x.com

mailto:sy.truong@meta-x.com

